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Abstract. The present paper is concerned with non-isothermal spherical Couette flow of Oldroyd-

B fluid in the annular region between two concentric spheres. The inner sphere rotates with a
constant angular velocity while the outer sphere is kept at rest. The viscoelasticity of the fluid
is assumed to dominate the inertia such that the latter can be neglected in the momentum and

energy equations. An approximate analytical solution is obtained through the expansion of the
dynamical variable fields in power series of Nahme number. Non-homogeneous, harmonic for

axial- velocity and temperature equations and biharmonic for stream function equations, have
been solved up to second order approximation. In comparison of the present work with isother-
mal case; [1,2], two additional terms; a first order velocity and a second order stream function

are stem as a result of the interaction between the fluid viscoelasticity and temperature profile.
These contributions prove to be the most important results for rheology in this work.
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1. Introduction

Rheological measurements of viscosity and normal stresses in non-Newtonian liq-
uids have attracted the attention in the last few decades. These measurements are
mainly performed on the basic assumptions that viscoelastic shear flow in geomet-
rical annuli is steady, uniform axial and isothermal. Any significant departure from
this base flow could lead to appreciable errors in the predicted material properties
[3,4,5]. Early theoretical and experimental observations, however, have revealed
that these simple flow assumptions are not always valid in practical situations,
and prediction of rheological parameters under these assumptions may lead to sig-
nificant errors. One of the major sources of error in predicting using simple flow
assumptions are elastic flow instabilities.

Although most of the previous work related to viscometric instruments dealt
with the prediction of secondary flow due to the elasticity of the fluids, few of these
were able to report well enough the structure and origin of the instability [6,7,8,9].
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In a flow that is unstable as a result of inertial or capillary forces viscoelasticty can
either stabilize or further destabilize that flow, depending on the particular flow
and the fluids rheology [10]. Some practical instability flow categories; namely,
Taylor–Couette, cone-and-plate, parallel plate, etc. . . have been analyzed in the
review paper reported by Larson. [11].

Another important sources of error is the temperature rise due to viscous dis-
sipation. When a fluid is sheared, some of the work done is dissipated as heat
which causes an increase in temperature within the fluid. Because of the high
viscosities of polymeric fluids, especially polymer melts, a temperature rise due
to viscous dissipation may considerably affect the isothermal flow field; as stated
in the present work. Moreover, fluid parameters, such as viscosity and relaxation
time are very sensitive to temperature changes [12]. In spite of this crucial impor-
tance of the temperature dependent flow phenomenon, relatively little attention
has been paid to the non-isothermal flow of viscoelastic fluids until the last few
years [9,13,14]. In solving non-isothermal viscoelastic flow problems, coupling re-
lation between the momentum and energy equations should be achieved using a
non-isothermal constitutive equations along with temperature-dependent material
properties [15].

It is of interest to show that numerous works have been dealt with spherical
Couette flow of Oldroyd-B fluid isothermally, both theoretically and experimen-
tally, Yamaguchi et al. [16,17,18]. Recently, Abu-El Hassan [1,2] investigated
the same problem for Oldroyd 8-constant constitutive model, where Oldroyd-B is
taken as a special case, using a power series technique.

The present boundary value problem (B.V.P) is concerned with non-isothermal
steady state shear flow of Oldroyd-B fluid in the annular region between two
concentric spheres. The inner sphere rotates with a uniform angular velocity ω
about the z-axis centered in the origin of the system and the outer sphere is at
rest. The successive approximate method of solution is performed through the
expansion of the dynamical variables in power series of Nahme number. A non-
homogeneous, harmonic axial-velocity and temperature equations, and biharmonic
stream function equations have been presented and then solved up to second order
approximation. Two additional contributed terms; namely, a first order axial-
velocity component and a second order stream function have been appeared as
a result of the interaction between viscoelasticity and the temperature profile.
These contributions, which don’t exist in the isothermal case, prove to be the
most important results in the present work .

To the best of our knowledge there is no analytical analysis of the non-isothermal
spherical Couette flow of Oldroyd-B fluid is performed until yet [14,19].
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2. Governing equations

We consider the non-isothermal flow of an incompressible viscoelastic fluid in the
gap width between two concentric spheres of radii R1 and R2 (R2 ≻ R1). The
fluid is subjected to a shearing motion by rotating the inner sphere with a con-
stant angular velocity ω about z-axis which passes through the center of the two
spheres. The spherical polar coordinate (r, ϑ, ϕ) is the most adequate system for
the present B.V.P. For Reynolds number Re = 0, the effect of inertia is negligible.
The dynamical equations, in dimensionless form, that governing the flow field are
respectively the continuity, the momentum and the energy equations, namely

∇ · V = 0 (2.1)

−∇P + ∇ · ((1 − β)e−Θd
=

+ τ
=
) = 0 (2.2)

∇2Θ + Na
[

(1 − β)e−Θd
=

+ τ
=

]

: ∇V = 0 (2.3)

where V is the velocity field of the fluid, defined in (r, ϑ, ϕ) system of coordinates

as V = Vr(r, ϑ)r̂ + Vϑ(r, ϑ)ϑ̂ + Vϕ(r, ϑ)ϕ̂, P is the pressure, τ
=

is the polymeric

contribution to the stress tensor, d
=

is the rate of deformation tensor defined as

d
=

= ∇V + ∇V T , β =
ηp0

η0
with η0 = ηp0

+ ηs0
where η0, ηp0

and ηs0
are; respec-

tively the zero-shear-rate, polymer and solvent viscosities. Θ is the dimensionless
temperature which related to the reference temperature T0 by

Θ = δ

(

T

T0
− 1

)

. (2.4)

T is the dimensional temperature and δ is the dimensionless thermal sensitivity
defined by

δ =
T0

η0

∣

∣

∣

∣

∂η

∂T

∣

∣

∣

∣

T=T0

. (2.5)

The Nahme number Na is defined as [9, 14],

Na =
η0δR

2
1ω

2

kT0
(2.6)

where k is the thermal conductivity of the fluid.
A non-isothermal version of the Oldroyd-B constitutive model based on the

pseudo-time hypothesis [3,12] gives the following equations for the extra stress τ
=
:

τ
=

+ De
e−Θ

1 + Θ/δ

(

∇

τ
=
− τ

=
(V · ∇) ln(1 + Θ/δ)

)

= βe−Θd
=

(2.7)
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where De = λ0ω is the Debora number related to Na as Na =
δη0R2

1ω

kT0λ0
De, λ0 is

the relaxation time of the fluid at reference temperature T0 and
∇

τ
=

is the convected

derivative of τ
=
; given by

∇

τ
=

=

∂τ
=

∂t
+ V · ∇τ

=
− τ

=
· ∇V − (τ

=
· ∇V )T . (2.8)

In this paper the material parameters have been modeled as in [9, 14, 20, 21] by
a Nahme type law. The solvent and polymer viscosities are given respectively by

ηs = ηs0
e−Θ and ηp = ηp0

e−Θ (2.9)

and the relaxation time by

λ(T ) =
λ0e

−Θ

1 + Θ/δ
(2.10)

3. Boundary conditions

The boundary conditions are no slip at the surface of the two spheres which has
the same constant temperatures, hence

Vϕ =

{

sinϑ
0

}

and Θ =

{

Θr

Θr

}

at r =

{

1
a

}

(3.1)

where a = R2/R1 is the geometrical parameter and Θr is the dimensionless tem-
perature of the two spheres at temperature Tr.

4. Method of solution

The perturbation method of solution is used to solve the present B.V.P. Let us
define

H =
1

1 + Θ/δ
, G = (ν · ∇) ln(1 + Θ/δ) and De = xNa (4.1)

where x = kT0λ0

η0R2
1ωδ

. The following simplifications are considered:

∇ · (e−Θd
=
) = e−Θ(∇ · d

=
− Σ) (4.2a)

∇ ·

{

He−Θ

(

∇

τ
=
− τ

=
G

)}

= e−ΘΛ (4.2b)

where

Σ = Σr r̂ + Σϑϑ̂ + Σϕϕ̂ (4.2c)
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Λ = Λr r̂ + Λϑϑ̂ + Λϕϕ̂ (4.2d)

with their components

Σi = Θ.rdir +
Θ.ϑ

r
diϑ (4.2e)

Λi = H(∇ ·
∇

τ
=
)i − HG(∇ · τ

=
)i + (HG.r + H.rG − HΘ.rG)

∇

τ ri

+
1

r
(HG.ϑ + H.ϑG − HΘ.ϑG)

∇

τ ϑi + (H.r − HΘ.r)
∇

τ ri

+
1

r
(H.ϑ − HΘ.ϑ)

∇

τ ϑi

(4.2f)

where i = r, ϑ and ϕ.
The momentum equation, Eq. (2.2), may be decomposed into a scalar equa-

tion governing the ϕ-component and a vector equation including the r- and ϑ-
components. Using Eqs. (4.2) into Eq. (2.2), then

∇2(V ϕ̂) − Σϕϕ̂ − NaxΛϕϕ̂ = 0 (4.3)

−∇P + e−Θ
[

(

(∇ · d
=
)r −Σr −NaxΛr

)

r̂ +
(

(∇ · d
=
)ϑ −Σϑ −NaxΛϑ

)

ϑ̂
]

= 0. (4.4)

Equation (4.3) can be written in the simplified form

D̂1Vϕ − Σϕ − NaxΛϕ = 0 (4.5)

where

D̂1 =
1

r2

[

∂r(r
2∂r) + ∂s

( 1

sin ϑ
∂ϑ(sin ϑ)

)]

. (4.6)

Introducing a stream function Ψ defining as

Vr r̂ + Vϑϑ̂ = −∇ ∧
( Ψ

r sinϑ
ϕ̂
)

(4.7)

and notice that

∇∧
[

e−Θ
{

(Σr + NaxΛr)r̂ + (Σϑ + NaxΛϑ)ϑ̂
}]

= −e−Θ
[

−
Θ.ϑ

r
(Σr + NaxΛr)

+ Θ.r(Σϑ + NaxΛϑ) −
1

r
{∂r(rΣϑ + NaxrΛϑ) − ∂ϑ(Σr + NaxΛr)}

]

ϕ̂

(4.8a)
and

∇∧
[

e−Θ∇2
{

−∇ ∧
( Ψ

r sinϑ
ϕ̂
)}]

=
1

r sin ϑ
e−Θ

[

D̂2
2Ψ − Θ.r∂r(D̂2Ψ) −

Θ.ϑ

r2
∂θ(D̂2Ψ)

]

ϕ̂. (4.8b)

Taking the curl of Eq. (4.4) and using Eqs. (4.8) we get:

D̂2
2Ψ −∇Θ · ∇(D̂2Ψ) + sinϑ[(Θ.r − ∂r)(rΣϑ + NaxrΛϑ)

− (Θ.ϑ − ∂ϑ)(Σr + NaxΛr)] = 0 (4.9)
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where

D̂2 = ∂2
r +

sin ϑ

r2
∂ϑ

(

1

sin ϑ
∂ϑ

)

. (4.10)

For Θ/δ ≺≺ 1 we can expand the functions H and G, Eqs.(4.1), with taking the
first two terms only, one gets

H =
1

1 + Θ/δ
∼= 1 − Θ/δ (4.11a)

and

G = (V · ∇) ln(1 + Θ/δ) ∼= (V · ∇)Θ/δ. (4.11b)

Also, the expansion of the function e−Θ can be written as

e−Θ = e−Θbe−(Θ−Θb) = e−Θb(1 − Θ + Θb). (4.11c)

The last assumption is true in the case of temperature difference between the fluid
and the solid spherical boundaries must satisfy the condition

∆T

T0
≺

1

δ
. (4.11d)

The present B.V.P. reduces to solve Eqs. (4.9), (4.5) and (2.3) in order to find
the stream function, velocity fields in ϕ-direction and the temperature profile,
respectively.

These equations are solved now by using the method of successive approxima-
tion through the expansion of the functions d

=
, τ

=
, Vϕ, Ψ and Θ in power series

with respect to the Nahme number in the form

A = A(0) + NaA(1) + Na2A(2) + . . .

where A is any one of the above variable functions. The expansion parameter Na
in our case is of order Na ≈ 0.03 depending on the values of the radius R1 of the
inner sphere and angular velocity ω.

4.1. Solution of the zero order approximation

The governing set of equations in this case is reduced to

D̂2
2Ψ

(0) −
(

Θ(0)
.r ∂r +

Θ
(0)
.ϑ

r2
∂ϑ

)

(D̂2Ψ
(0))

+ sin ϑ
[

(Θ(0)
.r − ∂r)rΣ

(0)
ϑ − (Θ

(0)
.ϑ − ∂ϑ)Σ(0)

r

]

= 0
(4.12)

∇2Θ(0) = 0 (4.13)

D̂1V
(0)
ϕ − Σ(0)

ϕ = 0 (4.14)
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with boundary conditions

Ψ(0) = Ψ(0)
.r = 0 at r = 1, a (4.15a)

Θ(0) = Θb at r = 1, a (4.15b)

V (0)
ϕ = sin ϑ, 0 at r = 1, a; respectively . (4.15c)

Employing Eq. (4.2 e) show that Σ
(0)
r and Σ

(0)
ϑ are just operators acting on Ψ(0)

so the solution of Eq. (4.12) subjected to the boundary conditions (4.15a) gives

Ψ(0) = 0. (4.16)

This means that, in zero order approximation the radial and angular velocities are
zero. If we look at Eq. (4.13), the solution which satisfy the boundary conditions
Eq. (4.15b) is

Θ(0) = Θb. (4.17)

This means that there is no temperature distribution inside the annular spherical
gap in the zero order approximation.

For V
(0)
ϕ , using Eq. (4.2e) and notice that Σ

(0)
ϕ = 0, Eq. (4.14) reduces to

1

r2

[

∂r(r
2∂r) + ∂ϑ

(

1

sin ϑ
∂ϑ sin ϑ

)]

V (0)
ϕ = 0. (4.18)

The solution of Eq. (4.18), which satisfies boundary conditions (4.15 c) is

V (0)
ϕ =

a3r−2 − r

a3 − 1
sin ϑ (4.19)

This is the classical Newtonian velocity field.

4.2 Solution of the first order approximation

The governing set of equations in this case is

D̂2
2Ψ

(1) − Θ(0)
.r ∂r(D̂2Ψ

(1)) −
Θ

(0)
.ϑ

r2
∂ϑ(D̂2Ψ

(1)) − Θ(1)
.r ∂r(D̂2Ψ

(0))

−
Θ

(1)
.ϑ

r2
∂ϑ(D̂2Ψ

(0)) + sin ϑ
[

Θ(0)
.r

(

rΣ
(1)
ϑ + xrΛ

(0)
ϑ

)

− Θ
(0)
.ϑ

(

Σ(1)
r + xΛ(0)

r

)

−∂r

(

rΣ
(1)
ϑ + xrΛ

(0)
ϑ

)

+ ∂ϑ(Σ(1)
r + xΛ(0)

r

)

+ rΘ(1)
.r Σ

(0)
ϑ − Θ

(1)
.ϑ Σ(0)

r

]

= 0

(4.20)

∇2Θ(1) + e−Θb

[

d
=

(0) − H(0)

(

∇

τ
=

(0) − τ
=

(0)G(0)

)]

: ∇V (0) = 0 (4.21)

D̂1Vϕ
(1) − Σϕ

(1) − xΛϕ
(0) = 0 (4.22)

with the boundary conditions

Ψ(1) = Ψ.r
(1) = 0 at r = 0, 1 (4.23a)
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Θ(1) = 0 at r = 0, 1 (4.23b)

Vϕ
(1) = 0 at r = 0, 1. (4.23c)

Equations (4.20), (4.21) and (4.22) can be simplified to take the form:

D̂2
2Ψ

(1) + 144x(1 + Θb/δ)Be−Θb(a3 − 1)a6r−7 sin2 ϑ cos ϑ = 0 (4.24)

∇2Θ(1) = −
9e−Θba6

(a3 − 1)2
r−6 + sin2 ϑ (4.25)

D̂1Vϕ
(1) + 3a3(a3 − 1)−1r−3 sinϑΘ(1)

.r = 0 (4.26)

For Ψ(1) the general solution of Eq. (4.24) is written as

Ψ(1)(r, ϑ) =

(

c1r
−2 + c2 + c3r

3 + c4r
5 − x

(

1 +
Θb

δ

)Be−Θba6

(a3 − 1)2
r−3

)

sin2 ϑ cos ϑ

(4.27)
where the coefficients c1, c2, c3 and c4 can be determined from the boundary con-
ditions Eq. (4.23a), see on App. A. Also the general solution of Eq. (4.25) for
Θ(1) is

Θ(1)(r, ϑ) =

(

c5 + c6r
−1 −

e−Θba6

(a3 − 1)2
r−4

)

P0+

(

c7r
2 + c8r

−3 +
e−Θba6

(a3 − 1)2
r−4

)

P2.

(4.28)
P0 and P2 are the associated Legendre polynomials and the c’s coefficients can be
determined from the boundary conditions, Eq. (4.23 b), App. A.

For V
(1)
ϕ velocity, taking into account Eq. (4.28), the general solution of Eq.

(4.26) is

Vϕ
(1)(r, ϑ) = 3(a3 − 1)−1a3

[(

c11r + c12r
−2 −

8

10
(c9r

3 + c10r
−4) +

c6

4
r−3

+
5

12
c8r

−5 +
eΘba6

6(a3 − 1)2
r−6

)

sinϑ

+

(

c9r
3 + c10r

−4 −
c7

4
−

9

16
c8r

−5 −
e−Θba6

3(a3 − 1)
r−6

)

sin3 ϑ

]

.

(4.29)
The c’s coefficients can be determined from the boundary conditions Eq. (4.23 c);
App. A.
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4.3 Solution of the second order approximation

The governing set of equations in this case is outlined as follows

D̂2
2Ψ

(2) −
[

Θ(0)
.r ∂r(D̂2Ψ

(2)) + Θ(1)
.r ∂r(D̂2Ψ

(1)) + Θ(2)
.r ∂r(D̂2Ψ

(0))
]

−
1

r2

[

Θ
(0)
.ϑ ∂ϑ(D̂2Ψ

(2)) + Θ
(1)
.ϑ ∂ϑ(D̂2Ψ

(1)) + Θ
(2)
.ϑ ∂ϑ(D̂2Ψ

(0))
]

+sin ϑ
[

Θ
(2)
.ϑ rΣϑ

(0) + Θ(1)
.r r(Σϑ

(1) + xΛϑ
(0)) + Θ(0)

.r r(Σ
(2)
ϑ + xΛϑ

(1))

−Θ
(2)
.ϑ Σr

(0) − Θ
(1)
.ϑ (Σr

(1) + xΛr
(0)) − Θ

(0)
.ϑ (Σ(2)

r + xΛr
(1))

−∂r(rΣ
(2)
ϑ + xrΛϑ

(1)) + ∂ϑ(Σ(2)
r + xΛr

(1))
]

= 0

(4.30)

∇2Θ(2) + e−Θb

[

(d
=

(1) − De
∇

τ
=

(1)) : (∇V )(0) + (d
=

(0) − De
∇

τ
=

(0)) : (∇V )(1)
]

+ Θ(1)d
=

(0) : (∇V )(0) = 0 (4.31)

with the boundary conditions

Ψ(2) = Ψ(2)
.r = 0 at r = 0, 1 (4.32a)

Θ(2) = 0 at r = 0, 1. (4.32b)

Equation (4.30) can be written as

D̂2Ψ
(2) = Γ1(r) sin ϑ cos ϑ + Γ2(r) sin4 ϑ cos ϑ (4.33)

where Γ1(r) and Γ2(r) are dimensionless functions of r; App. B.
The solution of Eq. (4.33) for the second order stream function Ψ(2), subjected

to the boundary conditions Eq. (4.32a) is

Ψ(2) =

(

a25r
−2 + a27 + a27r

3 + a28r
5 −

288

504
(a21r

−4 + a24r
7) + H2

)

sin2 ϑ cos ϑ + (a21r
−4 + a22r

−2 + a23r
5 + a24r

7 + H1) sin4 ϑ cos ϑ

(4.34)

where
H1 = a1r

−7 + a2r
−6 + a3r

−5 + a4 log(r)r−4 + a5r
−3

+ a6r
−1 + a7 + a8r + a9r

2
(4.34a)

H2 = a10r
−7 + a11r

−6 + a12r
−5 + (a13 log(r) + a14)r

−4 + a15r
−3

+ a16r
−1 + a17r + a23r

−1 + a18r
2 + a19r

4 + a26r
7.

(4.34b)

The solution of the second order temperature, Eq. (4.31), can be written as

∇2Θ(2) = Γ3(r)P0 + Γ4(r)P2 + Γ5(r)P4 (4.35)
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where Γ3(r), Γ4(r) and Γ5(r) are dimensionless functions of r listed in App. B.
The general solution of Θ(2) is given as:

Θ(2) = (b25 + b26r
−1 +H3)P0 +(a27r

2 +a28r
−3 +H4)P2 +(b29r

4 + b30r
−5 +H5)P4

(4.36a)
where

H3 = b1r
−10 + b2r

−9 + b3r
−8 + b4r

−7 + b5r
−5 + b6r

−4 + b7r
2 (4.36b)

H4 = b8r
−10 + b9r

−9 + b10r
−8 + b11r

−8 + b12r
−6 + b13r

−5

+ b14r
−4 + b15r

−2 + b16r
(4.36c)

H5 = b17r
−10 +b18r

−9 +b19r
−8 +b20r

−7 +b21r
−6 +b22r

−4 +b23r
−2 +b24r (4.36d)

The coefficients a’s and b’s are given in App. A.

5. Discussion

In the present work the non-isothermal steady state shear flow of an incompressible
Oldroyd-B fluid in the annular region between two concentric spheres is investi-
gated. The inner sphere rotates with an angular velocity ω about z-axis which
passes through the center of the spheres, and the outer sphere is kept at rest. The
viscoelasticity of the fluid is assumed to dominate the inertia such that the lat-
ter can be neglected in the momentum equation. Using the constitutive equation
of the non-isothermal Oldroyd-B fluid, an approximate analytical solution of the
energy and momentum equations are obtained through the expression of the dy-
namical variables in power series of Nahme number Na. The relative slow motion
and the smallness of ω always kept Na much smaller than unity. Accordingly, the
present results are valid only for slow motion.

In order to investigate the effect of viscosity and elasticity on the fluid rheology,
the parameters of a test fluid; namely Boger viscoelastic fluid, are considered. This
fluid first described in details by Boger and co-workers [22]. This viscoelastic fluid
consists of 0.05 % solution of monodisperse polystyrene (PS) with a polydispersities
of 1.05 and mass average molecular weights of 6.5 × 106 g/mol. The parameters
related to that fluid are ηp = 12.1 Pa.s, ηs = 34 Pa.s, λ0 = 17.7 s, k = 0.11 W/m.k,
T0 = 298 K and δ = 68. The resulting solution falls into a class of fluids that are
highly elastic with an almost constant viscosity. The large relaxation time and
large viscosity of the fluid eliminates its inertial effects and also permits the study
of viscoelastic flow at high Deborah numbers. We notice, from an experimental
point of view, that this fluid has a constant viscosity and first normal stress and
zero second normal stress (obeys Oldroyd-B fluid).

At this stage the set of parameters will be used to determine the motion of
the Oldroyd-B fluid in two deferent gap widths between the two spheres; namely,
a = 1.25 and a = 2. This investigation can help us in choosing a suitable polymer
in lubrication processes. Moreover, we consider the elasticity and viscous heating
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effects as perturbed processes with neglecting inertia. All the parameters related
to the Oldroyd-B fluid participate in the flow and temperature fields even the gap
width between the boundaries.

Through this analysis, the following results are presented:
In zero order solution, the Newtonian field Vϕ

(0), Eq. (4.19), is independent
of the parameters of the fluid which means that the velocity distribution in this
order of approximation is the same as for all types of fluids [1,16]. The solution
Vϕ

(0) as a function of r and ϑ in ρz-plane and in 3-dim configuration are shown
respectively, in Figs. (1) and (2) in case of a = 1.25, and a = 2.

(a) (b)

Figure 1. The velocity Vϕ
(0), a = 1.25. (a) In ρz-plane, (b) in 3-dim. configuration

(a) (b)

Figure 2. The velocity Vϕ
(0), a = 2. (a) In ρz-plane, (b) in 3-dim. configuration

These figures show that, the geometrical ratio “a” doesn’t effect the general
behavior of the velocity field in zero order approximation. Moreover, there is no
secondary flow, i..e. Ψ(0)(r, ϑ) = 0.
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The zero order temperature, Eq. (4.17), means that the temperature of the
fluid is the same as that for the two spherical boundaries. Hence, up to this order
of approximation the isothermal and non-isothermal cases are identical [1,16].

The first order approximation delivers all the field functions. A secondary flow
field for the stream function Ψ(1)(r, ϑ) in a plane perpendicular to the direction of
the primary flow, i.e in rϑ-plane, is produced. The stream-lines Ψ(1) = const. in
ρz-plane as well as in 3-dim. configuration for a = 1.25, and a = 2, are shown in
Figs. (3) and (4), respectively.

(a) (b)

Figure 3. The stream function Ψ(1), a = 1.25. (a) In ρz-plane, (b) in 3-dim. configuration

(a) (b)

Figure 4. The stream function Ψ(1), a = 2. (a) In ρz-plane, (b) in 3-dim. configuration

It is well known that, this secondary flow is a normal stresses-induced phenom-
ena. The flow field of the stream function Ψ(1) divide the annular region between
the two spheres into four similar parts, Figs. (3) and (4), where that the fluid
moves toward the inner sphere near the equator and away from it near the axis of
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rotation. We notice that the variation of the geometrical ratio “a” doesn’t affect
the general behavior of the first order stream lines but only their values. This
means that Ψ(1)(r, ϑ) takes the same form for all class of fluids under considera-
tion. The first order axial velocity is a direct result of existence of viscous heating,
Eq. (4.26), and it decreases exponentially with Θb or Θ(1)

∝ e−Θb . Moreover, the
distribution in case of a = 2 is greater than that for a = 1.25.

The first order temperature Θ(1)(r, ϑ) as a function of r and ϑ in ρz-plane and
in 3-dim. configuration, for a = 1.25, and a = 2, are shown in Figs. (5) and (6),
respectively.

(a) (b)

Figure 5. The temperature field Θ(1), a = 1.25. (a) In ρz-plane, (b) in 3-dim. configuration

(a) (b)

Figure 6. The temperature field Θ(1), a = 2. (a) In ρz-plane, (b) in 3-dim. configuration

This heat flow profile is a temperature distribution due to viscous heating in the
two cases, i.e. due to a layer frictions of the fluid and hence there is a conversion
of the mechanical energy into thermal energy between the two spheres, as shown
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in Figs. (5) and (6). The large value of constant temperature lines Θ(1) = const.
appear at the equator where the temperature profile decreases exponentially, with
Θb, as we move towards the spherical boundaries of the two spheres. It seams like
the sources of temperature at that points and flow away from them.

In addition we notice that the geometrical parameter “a” effects the heat pro-
duction as shown in the last figures where the largest value of temperature in case
of a = 2 is greater than that in case of a = 1.25. This means that, decreasing of
“a” decreases the conversion from mechanical into thermal energies.

(a) (b)

Figure 7. The velocity Vϕ
(1), a = 1.25. (a) In ρz-plane, (b) in 3-dim. configuration

(a) (b)

Figure 8. The velocity Vϕ
(1), a = 2. (a) In ρz-plane, (b) in 3-dim. configuration

Finally, in contrast to isothermal case in the first order approximation; a so-
lution of the velocity field Vϕ

(1) has appeared which is being an effect of the
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presence of temperature distribution in the density function; Eq. (4.26). The ve-
locity Vϕ

(1)(r, ϑ) as a function of r and ϑ in ρz-plane and in 3-dim. configuration,
for a = 1.25, and a = 2, are shown respectively in Figs. (7) and (8).

As shown in these figures, the velocity contribution Vϕ
(1)(r, ϑ) divides the gap

width between the two spheres into two similar parts. The eddy loops that found
near the inner sphere move in the same direction as the primary velocity, but that
in the nearest of the outer sphere move in the opposite direction. Hence, there
is a fluid-stagnant layer in this order of approximation between these two kind of
loops with zero velocity, i.e. stationary layer. The maxima of the velocity is at
the center of these two eddy loops on the equator, and the velocity slow down in
a direction far away from that center tends to zero at the stationary layer as well
as on the two spherical boundaries R1 and R2.

Moreover, from these figures we can see that the variation of the parameter “a”
does not change the velocity distribution in the spherical gap width. This means
that the fluid behavior remains unchanged but the velocity values.

In the second order approximation, the solution for the stream-function Ψ(2)(r, ϑ)
is delivered. The stream-lines Ψ(2) = const. in ρz-plane and in 3-dim. configura-
tion, in case of a = 1.25, and a = 2, are shown in Figs. (9) and (10), respectively.

(a) (b)

Figure 9. The stream function Ψ(2), a = 1.25. (a) In ρz-plane, (b) in 3-dim. configuration

The general behavior of the stream-lines in this order of approximation is the
same as for Ψ(1)(r, ϑ) except that of an appearance of more eddy loops in the
nearest region of the inner sphere move in opposite direction; Figs. (9) and (10).
These eddy flows appear in the two cases; i.e. for a = 1.25 and a = 2, which means
that the geometrical size doesn’t effect the general behavior of the viscoelactic fluid
flow. Similarly, an increase of the gap width increases the velocity-component
values, which can be attributed to the same reasons as for Ψ(1)(r, ϑ).

A temperature profile Θ(2)(r, ϑ) in the second order approximation have been
delivered. On the basis of the solution of Eq. (4.31) we can see that it depends
on Ψ(1)(r, ϑ). Hence, it is more complex flow field than Θ(1)(r, ϑ) profile. The
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(a) (b)

Figure 10. The stream function Ψ(2), a = 2. (a) In ρz-plane, (b) in 3-dim. configuration

temperature distribution Θ(2)(r, ϑ) in ρz-plane and in 3-dim. configuration for
a = 1.25, and a = 2, are shown in Figs. (11) and (12), respectively.

As shown in Figs. (11) and (12) in case of a = 1.25 there exists a region
of negative values which decrease the value of the temperature of the fluid and
other of positive values ‘the shaded regions’ in which the temperature increase.
In case of a = 2 all the field take negative values by which the temperature of
the fluid decrease. The appearance of the negative value can be attributed to the
expansion used in this solution, in which the third term in this expansion can takes
negative or positive sign depending on the region of the case under consideration.
The conversion from mechanical to thermal energy is not a reversible process. So
the appearance of negative areas is just a correction to the whole temperature
within the domain width. Moreover, the second order temperature is effected by
all parameters of the fluid in contrast to the first order one. The sensitivity of
the fluid and its viscosity increase the positive area relative to the negative one
in contrast to thermal conductivity and relaxation time of the fluid. In the same
manner, the second order stream function is effected by all parameters of the
fluid. The amplitude of this stream function increases with increasing the thermal
conductivity and relaxation time and decreases with increasing sensitivity of the
fluid and its viscosities.

The effect of elasticity of the fluid appears in the first order solution as a
secondary flow, or first order stream function. This function is affected by all
parameters related to the fluid. Its amplitude increases with increasing the ther-
mal conductivity of the fluid and depends linearly on the relaxation time of the
fluid. Moreover, its amplitude decreases with increasing the total viscosity of the
fluid (solvent and polymer viscosities) and decreases with increasing its sensitiv-
ity. This is due to the fact that the sensitivity measures how much the fluid sense
temperature, and temperature decreases relaxation time which is responsible for
this secondary flow.
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(a) (b)

Figure 11. The temperature field Θ(2), a = 1.25. (a) In ρz-plane, (b) in 3-dim. configuration

(a) (b)

Figure 12. The temperature field Θ(2), a = 2. (a) In ρz-plane, (b) in 3-dim. configuration

5. Conclusion

The present paper is concerned with non-isothermal spherical Couette flow of
Oldroyd-B fluid in the annular region between two concentric spheres. The inner
sphere rotates with angular velocity ω while the outer sphere is kept at rest. Using
the successive approximate method a solution is obtained through the expansion of
the dynamical fields in power series of Nahme number. Up to second order approx-
imation, the relevant solution of non-homogeneous, harmonic for axial-velocity and
temperature equations and biharmonic for stream function equations is presented.
Two additional terms; namely, a first order velocity and a second order stream
function, are stem as a result of the interaction between the fluid viscoelasticity
and temperature profile. These contributions, prove to be the most important
results for rheology in this work.
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Appendix A

To simplify these coefficients, let us define two functions

h =
a3

a3 − 1
and g = 1 −

Θb

δ

1- Coefficients of first order stream function solution, Eq. (4.27):

c1 =
6Be−Θbgh2x(1 + 4a + 10a2 + 15a3 + 15a4 + 10a5 + 4a6 + a7)

a(4 + 16a + 40a2 + 55a3 + 40a4 + 16a5 + 4a6)

c2 =
−2Be−Θbgh2x(1 + 4a + 10a2 + 20a3 + 35a4 + 35a5 + 20a6 + 10a7 + 4a8 + a9)

a3(4 + 16a + 40a2 + 55a3 + 40a4 + 16a5 + 4a6)

c3 =
Be−Θbgh2x(5 + 20a + 29a2 + 32a3 + 29a4 + 20a5 + 5a6)

a3(4 + 16a + 40a2 + 55a3 + 40a4 + 16a5 + 4a6)

c4 =
−3Be−Θbgh2x(1 + 4a + 5a2 + 4a3 + a4)

a3(4 + 16a + 40a2 + 55a3 + 40a4 + 16a5 + 4a6)
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2- Coefficients of first order temperature solution, Eq. (4.28):

c5 =
e−Θbh2(1 + a + a2)

2a3
c6 =

e−Θbh2(1 + a + a2 + a3)

2a3

c7 =
e−Θbh2

a + a2 + a3 + a4 + a5
c8 =

e−Θbh2(a6 − 1)

a − a6

3- Coefficients of first order axial velocity solution, Eq. (4.29):

c9 =
−16(1 + a)e−Θbh2 + 12a2(1 + a + a2 + a3)c7 − 27ac8

48a2(1 + a + a2 + a3 + a4 + a5 + a6)

c10 = −
16(1 + a9)e−Θbh2 + 12a6(a3 − 1)c7 + 27a(a8 − 1)c8

48a6
(

1
a4 − a3

)

c11 =
15a3c6 + 25a(1 + a + a2)c8 + 48a4(1 + a + a2 + a3 + a4)c9 + 2(1 + a)(5(1 + a2)e

−Θb h2
− 24a2c10)

60a4(1 + a + a2)

c12 = −

15a3(a4
− 1)c6 + 25a(a6

− 1)c8 + 10(a7
− 1)e

−Θb h2 + 48a7(a2
− 1)c9 − 48a2(a5

− 1)c10

60a6
(

−

1
a2 + a

)

4- Coefficients of second order stream function solution, Eq. (3.34 ):

a1 =
Be−2Θbh4x(−63 + gδ(331 − 98Θb))

420δ

a2 = −
3e−Θbh2(136δδ1 + 3Bx(156 + gδ(−938 + 351Θb))c8)

4576δ

a3 = 3Be−Θbgh2x(Θb − 2)c10 a4 = −
6

11
e−Θbh2c2

a5 = −
9

8
c2c8 a6 = −

e−Θbh2(12δc3 + Bx(6 + gδ(−8 + Θb))c7)

4δ

a7 = −
3

8
(2c8c7 + 3c3c8) a8 = −

29

20
e−Θbh2c4

a9 =
1

8
(−6c2c7 − 7c4c8 − 4Bge−Θbh2x(−2 + Θb)c9)

a10 =
Be−2Θbh2x(441 + gδ(−1933 + 833Θb))

7350δ

a11 =
e−Θbh2(−248δc1 + 3Bx(598 + gδ(−3254 + 1417Θb))c8)

10296δ

a12 = −
9

5
Be−Θbgh2x(Θb − 2)c10 a13 =

24

77
e−Θbh2c2

a14 =
e−Θbh2(−40δc2 + 7Bx(27 + gδ(−47 + 27Θb))c6)

588δ

a15 =
1

6δ

(

6Be−Θbh2x(1 − gδ)c5 + δ(2c1c6 + 3(c2c8 + 6Be−Θbh2x(Θb − 2)c12))
)
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a16 =
9e−Θbh2δc3 + δc2c6 + Be−Θbh2x(3 + 2gδ(−12 + Θb))c7

2δ

a17 = −
43

30
e−Θbh2c4 a18 =

3

4
c3c7 + c3c7 −

2

5
Be−Θbgh2x(Θb − 2)c9

a19 =
11

12
c4c6 a20 =

1

63
c4c7

5- Coefficients of second order temperature solution Eq. (4.36 a):

b1 =
1

25
BDee−2Θbg2h2x(5 − 13Be−Θbh2)

b2 =
1

60
Dee−Θbgc1(−15 + 31Be−Θbh2)

b3 =
3

40
e−2Θbh4 b4 =

1

35
e−Θb(15Degc2(−1 + Be−Θbh2) + h2c8)

b5 = −
3

10
e−Θbh2c6 b6 = −

1

10
e−Θb(3Degc3(5 + 3Be−Θbh2) − 5h2(c8 − 6c12))

b7 = −
3

5
e−Θb(5Degc4(3 + 5Be−Θbh2) − h2c7) b8 =

6

7
B2Dee−3Θbg2h4x

b9 = −
8

11
BDee−2Θbgh2c1 b10 = −

3

14
e−2Θbh4

b11 = −
1

3
e−Θbh2c8 b12 =

6

7
e−Θbh2c10

b13 = −
3

7
e−Θbh2c6 b14 = e−Θbh2(12BDee−Θbgc3 − c5 + 6c12)

b15 = −
3

14
e−Θbh2(140BDee−Θbgc4 + c7) b16 =

72

35
e−Θbh2c9

b17 = −
3

14
B2Dee−3Θbg2h4x b18

36

65
BDee−2Θbgh2c1

b19 =
19

105
e−2Θbh4 b20 =

27

55
e−Θbh2c8

b21 = −
72

35
e−Θbh2c10 b22 =

27

5
BDee−2Θbgh2c3

b23 =
4

35
e−Θbh2(35BDee−Θbgc4 + c7) b24 = −

16

35
e−Θbh2c9
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Appendix B

The functions that appeared in Eq. (4.33):

Γ1 =
244e−Θbh2c4

r3
− 22c4c6 + 8r3c4c7

+
120c1c7 + 180c3c8

r4
+

720e−Θbgh2xc10(2 − Θb)

r9

+
1

δr5
(12e−Θb(15h2δc3 − eΘbδc2c6 + Bh2x(9 + 8gδ)c7))

+
1

δr11
(12e−2Θbh4x(9 + (9eΘb − 38)gδ + 21gδΘb))

−
1

δr8
(6e−Θbh2(16δc2 + Bxc6(−27 + 47gδ − 27gδΘb)))

−
1

δr10
(3e−Θbh2(40δc1 − 3Bxc8(22 − 106gδ + 55gδΘb)))

+
1

r12

(1

5
e−Θb(90e−Θbc3c6 + 24(35eΘbc2c7 + 35eΘbc4c8

+ 18Bgh2xc9(−2 + Θb)))
)

+
1

δr7
(24e−Θbh(6Bh2x(1 + gδ)c5 + δ(2eΘbc1c6

− 3(eΘbc3c8 − 6Bgh2xc12(−2 + Θb)))))

Γ2 =
108e−Θbh2c2

r8
−

522e−Θbh2c4

r3
+

90c2c8

r7
−

210c1c7 + 315c3c8

r4

−
1

δr11
(6Be−2Θbh4x(63 − 331gδ + 68gδgb))

−
1

δr5
(36e−Θbh2(12δδ3 + Bxc7(6 − 8gδ + gδδb)))

−
1

δr8
(6e−Θbh2(16δδ2 + Bxc6(−27 + 47gδ − 27gδgb)))

−
1

4δδ10
(3e−Θbh2(136δδ1 − 3Bxc8(156 − 938gδ + 351gδgb)))

−
1

r2
(45e−Θb(6e−Θbc2c7 + 7e−Θbc4c8 + 4Bgh2xc9(−2 + Θb)))

+
1

r9
(1080e−Θbgh2xc10(−2 + Θb))

The functions that appeared in Eq. (4.35):

Γ3 =
21e−2Θbh4c2

5r10
+

6e−Θbh2c6

r7

+
1

r12

18

5
BDee−3Θbg2h4(5eΘb − 13Bh2)x
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−
1

r11

6

5
Dee−2Θbg(15eΘb − 31Bh2)c1

+
1

r4

1

5
e−2Θb(−30Deg(3eΘb + 5Bh2)c4 + 6eΘbh2c7)

+
1

r9

1

5
e−2Θb(−90Deg(eΘb − Bh2)c2 + 6eΘbh2c8)

−
1

r6

6

5
e−2Θb(3Deg(3eΘbg(5eΘb + 3Bh2)c3 − 5eΘbh2(c5 − c12))

Γ4 = −
75e−2Θbh4

7r10
+

72B2Dee−3Θbg2h4x

r12
−

48BDee−2Θbgh2c1

r11
+

6e−Θbh2c6

r7

−
12e−Θbh2c8

r9
−

288e−Θbh2c9

35r
+

1

r4

6

7
e−2Θbh2(140BDegc4 + eΘbc7)

+
144e−Θbh2c10

7r8
+

1

r6
6e−2Θbh2(12BDegc3 − eΘb(c5 − 6c12))

and

Γ5 =
228e−2Θbh4

35r10
−

216B2Dee−3Θbg2h4x

5r12
+

144BDee−2Θbgh2c1

5r11

+
216BDee−2Θbgh2c3

5r6
+

54e−Θbh2c8

5r9
+

288e−Θbh2c9

35r

+
1

r4

8

35
(315BDee−2Θbgh2c4 + 9e−Θbh2c7) −

144e−Θbh2c10

7r8
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